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File Profiling for Insider Threats 

ABSTRACT/EXECUTIVE SUMMARY 

Insiders pose special threats to computer systems. An insider is defined as someone who has 
some level of legitimate access to a computer system. An insider thus has a foothold in the 
system, and will normally be performing some activity there. Unlike an intruder, who must first 
obtain access, an insider typically focuses directly on doing damage or gaining unauthorized 
privileges. Thus, intrusion detection systems are often not properly designed to meet the threats 
posed by insiders. In the most recent CSI/FBI Report on Computer Security Issues and Trends 
[Power02], 65% of responding organizations reported one or more incidents of insider abuse that 
led to financial losses. The average loss reported here at UCLA and due to an insider attack was 
$300,000, with total losses for all reporting agencies of over $4 million. 

Insider threats are commonly regarded as among the most difficult to combat [Schneier 00a]. 
Firewalls and other perimeter defenses will not work, as the insider is already inside them. Any 
attempt to base security on the secrecy of your procedures will fail, since the insider properly 
knows many such procedures and is in a particularly good position to find out about any he does 
not yet know. To some extent, possibly a great extent, he is trusted. The insider knows the 
weaknesses of the system, and can thus go directly for the throat. In some cases, the insider may 
have had a hand in designing the system. Detecting insider threats is commonly regarded as an 
unsolved security problem. 

The goal of this project was to demonstrate that it is possible to detect insider misbehavior by 
careful examination of the file access characteristics of users. For modern computer systems, 
practically nothing of any significance can be done without accessing files. Running programs, 
viewing data, accessing networks and other devices, performing standard housekeeping 
functions, even determining the basic configuration of the machine and operating system, all rely 
on opening, reading, and writing files. Unlike other fundamental computer events, like 
keystrokes or mouse movements, the file system also works at a relatively high semantic level. 
Thus, file activity is both ubiquitous and relatively semantically meaningful, making it a 
promising arena to search for traces of what users are doing. If they are misbehaving, perhaps 
these traces can allow that misbehavior to be recognized quickly. 

This research project successfully demonstrated that a user's file access behavior can be 
analyzed to determine when he stops behaving properly and starts engaging in suspicious 
activity. The performance costs of gathering the data are acceptable, demonstrated by the fact 
that over a period of two years we received no complaints related to system slowness. (On 
previous projects where the experimental system was not sufficiently fast, our local users have 
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never been reluctant to complain about the impact of testing on their work.) The amount of data 
we gathered was vast, but a real system need not keep all gathered data, and could probably 
reduce batches of traced records to model data frequently. Further, some of the data we traced 
has, so far, given us no advantage in detecting insider threats, so a real system would not need to 
gather this data. 

Demonstrating that the method can be used in an experimental environment and actually making 
it work in a real environment are two different problems. We have only addressed the first. 
More research and development will be necessary to deal with the second. This project 
essentially suggests that this additional research and development would be worthwhile. 

The obvious next step in this research is taking the very simple system that successfully detected 
a few attacks into an actual system that detects insider threats using this method, possibly 
integrated with other methods. To go beyond the already-completed proof-of-concept to this 
next useful step is a large amount of work, since the added value will be augmenting a real 
system with a facility that compares ongoing file system accesses to models of proper behavior. 



File Profiling for Insider Threats 

Final Report 

File Profiling for Insider Threats 
Final Report 

1. Introduction 
Insiders pose special threats to computer systems. An insider is defined as someone who has 
some level of legitimate access to a computer system. An insider thus has a foothold in the 
system and will normally be performing some activity there. Unlike an intruder, who must first 
obtain access, an insider typically focuses directly on doing damage or gaining unauthorized 
privileges Thus, intrusion detection systems are often not properly designed to meet the threats 
posed by insiders. In the most recent CSI/FBI Report on Computer Security Issues and Trends 
[Power02] 65% of responding organizations reported one or more incidents of insider abuse that 
led to financial losses. The average loss reported here at UCLA and due to an insider attack was 
$300,000, with total losses for all reporting agencies of over $4 million. 

Insider threats are commonly regarded as among the most difficult to combat [Schneier 00a]. 
Firewalls and other perimeter defenses will not work, as the insider is already inside them. Any 
attempt to base security on the secrecy of your procedures will fail, since the insider properly 
knows many such procedures and is in a particularly good position to find out about any he does 
not yet know. To some extent, possibly a great extent, he is trusted. The insider knows the 
weaknesses of the system, and can thus go directly for the throat. In some cases, the insider may 
have had a hand in designing the system. Detecting insider threats is commonly regarded as an 
unsolved security problem. 

The goal of this project was to demonstrate that it is possible to detect insider misbehavior by 
careful examination of the file access characteristics of users. For modern computer systems, 
practically nothing of any significance can be done without accessing files. Running programs, 
viewing data, accessing networks and other devices, performing standard housekeeping 
functions, even determining the basic configuration of the machine and operating system, all rely 
on opening, reading, and writing files. Unlike other fundamental computer events, like 
keystrokes or mouse movements, the file system also works at a relatively high semantic level. 



Thus, file activity is both ubiquitous and relatively semantically meaningful, making it a 
promising arena to search for traces of what users are doing. If they are misbehaving, perhaps 
these traces can allow that misbehavior to be recognized quickly. 

Our thesis was that ordinary user actions could be characterized by types of file access behavior 
that are recognizably different than the patterns exhibited by an insider attempting to gain 
improper privileges or making improper use of his existing privileges. Because insiders have 
usually worked on a machine for a significant period of time before they start to behave badly, 
we believed we could make models of their early good behavior that would allow us to 
determine, by observing deviations from the model, when they had gone bad. Further, 
information about the particular files being accessed might prove useful in distinguishing 
uninteresting variations in behavior from dangerous new patterns that could compromise the 
system. 

As a proof-of-concept, we did not propose to build a deployable system, but instead to examine 
the idea carefully enough to determine if it was feasible. 

This final report summarizes our findings from this project. We describe our research approach, 
the methods we used to gather data, our analysis ofthat data, and the experiments performed to 
demonstrate that models and statistics obtainable from that data could be used to differentiate 
proper and improper insider behaviors. We offer our conclusions and suggest possible future 
directions for research based on our findings. 

Section 2 describes our basic approach, and Section 3 describes how we gathered our data and 
characterizes that data. Section 4 describes various models we derived from the data that allow 
us to detect many kinds of activities that are common when an insider starts to misbehave. 
Section 5 discusses our performance against our original plan and outlines future work. 
Research conclusions from this effort are provided in Section 6 



2. Research Approach 
Our experience with tracing file system activities for past projects suggested to us that such 
traces contain much useful information about what users are doing. Relatively little can be done 
in modern operating systems without making extensive use of the file system, particularly 
because the Unix paradigm of overloading the concept of a file to include devices, interprocess 
communications channels, and even processes themselves causes seemingly non-file operations 
to work through the file system. If everything a user does produces file system activity, perhaps 
traces ofthat activity can be analyzed to distinguish between good behavior and bad. 

This approach seemed especially fruitful for detecting misbehavior by insiders. An intrusion 
detection system (IDS) is generally focused on finding attempts to break into system. Insiders 
are already inside the system, by definition, and thus their misbehavior may evade detection by 
an IDS. On the other hand, insiders have typically developed a characteristic pattern of behavior 
over the course of performing their proper duties, so the system can build a baseline of proper 
insider behavior to compare against ongoing behavior. If the deviation between the two is great 
enough, perhaps that is a signal of an insider threat. 

This research thesis rested upon several unproven assumptions: 

1. It assumes that file system activity is regular enough that we can make useful models of 
normal behavior. If normal user behavior results in highly varied patterns of file system access, 
we will be unable to differentiate between such random noise and actual attempts to misuse the 
system. Another aspect of this assumption is that user behavior is largely stable over long 
periods of time. If a day's activity is quite regular, but the next day's activity is equally regular 
in a different way, we will not be able to build a useful model over a reasonable period of time. 

2. It assumes that attempts to behave improperly are distinguishable from normal behavior at the 
file system level. It is certainly conceivable that both proper and improper behavior result in 
very similar calls to the file system, with the actual damage being done through other 
mechanisms or deep inside the actual data provided to file system calls. Were this true, while we 
might be able to make decent models of normal behavior, insider misbehavior would also match 
those models, rendering the approach useless. While it seemed obvious to us that there would be 
many visible differences, it was certainly possible that setting the sensitivity of the system low 
enough to catch most insider threats would cause an unacceptable number of false positives from 
the system, a lesser (but still damaging) form of this problem. 

3. It assumes that both models of normal behavior and checks of actual behavior against those 
models can be made fast enough to be of use. The approach would be most useful if it could 
check user behavior against models rapidly enough to detect problems in real time. At worst, it 
must be able to analyze traces of behavior against models rapidly enough to give system 
administrators signals of problems soon enough to counter the insider threat. 

The major goal of our project was to develop enough evidence and understanding to answer 
these questions. We believe that we have done so, though we did not perform the exact steps 
outlined in the proposal, and we do not have a working implementation that detects problems in 
real time. 



3. Trace Gathering 
Our approach to this research was based on our existing expertise at gathering and analyzing file 
system traces. At first glance, trace gathering seems easy, and indeed, it is not an 
overwhelmingly challenging problem. But there are many details that make it hard to gather 
large amounts of trace data reliably, which is why it is so rarely done. Further, if one is not 
careful about how the data is gathered, analysis can become impossible. With the greatest of 
care, proper analysis of large amounts of trace data is still a daunting task. 

Our first step was to gather a great deal of trace data. Of necessity, we gathered data from 
machines under our own control, which implied that we instrumented machines used by 
professors, graduate students, and other researchers. This necessity led to another challenge, 
since we now had to address the issue of whether lessons learned by close analysis of computer 
science researchers would be applicable to others who use computers. We address this challenge 
in the conclusions of the report. 

Our laboratory uses Linux primarily for its day-to-day operations. Some work is done under 
Windows 95 and Windows NT, but the bulk of the computer use in our lab is done under Linux. 
Also, our instrumentation experience was largely in Linux. Thus, we gathered traces of Linux- 
based activity only, except to the extent that remote Samba accesses from Windows machines 
were served from an instrumented Linux machine. The instrumentation in question required 
minor patches to the operating system, since we needed to capture all file system calls, as well as 
a few system calls that were not directly related to the file system but proved to be necessary if 
we wanted to trace what was really going on in the system. (In total, around 35 system calls of 
various sorts were trapped and recorded.) We had performed such instrumentation for such 
DARPA-funded projects as Ficus and Travler, but keeping up to date with new versions of the 
Linux kernel and adding the extra functionality required for this project required further 
alterations to kernel tracing. 

Our researchers use laptops for their primary machines. Sometimes these laptops are connected 
to the network, but often they are not. The file tracing solution thus needed to store traces on 
each machine's own disk, but because many of those disks had limited capacity, they also had to 
be transferred off the laptop disks to a more permanently reachable site on a server. Experience 
has shown us that this process must be fully automated or users on tracing machines will not 
accept it. Automating the process requires a modest amount of care to ensure proper behavior 
even when disks are full and time is limited. A server machine was also traced. Unlike the 
laptops, this server primarily provided web and mail service for a large number of users, rather 
than acting as a personal computer. 

Each traced event was a call to the operating system, most frequently to perform some file 
system activity, but also for other purposes—such as creating a new process. The information 
stored from the traced event was typically the type of the call, the user making the call, 
timestamps, the identity of the file targeted by the call, and other header-like information related 
to the call. We did not trace data provided to or returned by file system calls. Doing so would 
have quickly multiplied the size of the real file system by several times. Further, realistic time 
pressures make it infeasible to analyze all data in all file system calls. Also, there are privacy 
considerations. While users in our lab relinquish some degree of privacy in the interests of 
research, a system based on an unreasonable weakening of privacy is not likely to become 



popular in the real world. None of our users ever complained about noticeable performance 
impact due to the tracing code. For typical user systems, we believe that this level of tracing can 
be done without disturbing theusers. 

Ultimately, we traced the file system activities for eight machines representing ten real human 
users (and several daemon users) over the course of two years. These traces captured 
approximately 1.5 billion file system calls. These traces are still in existence and being used for 
this and other purposes. In Section 5 we discuss methods of sanitizing the traces, which would 
allow us to release them for use by others. 

Each record in these traces represents a single system call, typically a file open, close, read, or 
write. Other file system calls (such as renaming a file, directory operations, and accessing or 
setting the metadata for a file) are also represented by records. Similarly, process creation and 
destruction system calls, and a few other system calls related to process management, produced 
trace records. Traces are organized into files, each representing the data gathered from a 
particular machine over a particular period of time. 

Because of the vast volume of trace data, almost all trace analysis was done with automated 
tools. These tools typically read a file or set of files and search them for records of certain types. 
For example, the tool might allow counting of all file opens performed by a particular user, or it 
might make a list of the names of the files the user accessed. Where necessary, we performed 
some hand inspection of traces. In most cases, hand inspection was used to gain an 
understanding of the underlying behavior of particular programs, or to learn why counterintuitive 
results from the summarization tools occurred. We were careful to test that our trace analysis 
tools produced correct results before relying on them. 

Our traces are organized as time-ordered logs, with entries made in the order they occurred on 
the machine in question. As a result, adjacent entries in the log do not necessarily represent a 
history of one thread of activity. For example, one log entry might represent a mail program 
running in the background checking to see if new mail has arrived, while the next log entry 
represents a foreground text editor opening a file. For some types of analysis, it is necessary to 
extract the set of log entries that represent a single thread of application file accesses. The 
process identification information we kept allowed us to perform this differentiation. In the 
example outlined above, the mail program and the text editor have different process IDs, so the 
adjacent records can be separated into their proper place in the different threads representing the 
mail program and the editor. 

As described in the next section, some of our models required gathering data for all invocations 
of a process, across different machines and sets of users. Doing so required identification of the 
name of the process, which required clever analysis of the trace, since the system calls we 
trapped did not necessarily have that information readily available. These models essentially 
incorporate the file accesses of many different runs of the program by many different users. For 
example, we gathered data on all invocations of the Is program, a Unix program that lists the 
contents of directories. 



4.   Model Building 
We gathered the traces described in the previous section to allow us to derive models of user 
behavior from actual data. Therefore, we started an analysis of the traces early in the project. 

The models to be built depended on how we planned to detect insider threats. As with an 
intrusion detection system, there are two basic methods. First, the system can have a list of 
known suspicious behaviors. This type of misuse detection requires recognition of a signature 
behavior among the flood of normal accesses. Second, the system can know about the normal 
patterns of behavior and look for new patterns out of the ordinary. This type of anomaly 
detection requires a deep enough understanding of normal behavior to allow recognition of truly 
abnormal behavior. We built models based on both methods. 

A previous intrusion detection system [Lee99] uses an AI approach to predict the next system 
call based on the previous sequence of system calls for each program. This system uses some 
ideas that we also use, but it relates to specific exploits and thus cannot be generalized. For 
example it detects a buffer overflow exploit in the sendmail program by learning the sequences 
of system calls invoked by "sendmail". This is not scalable, as it requires recording the sequence 
for each program in the system. General rules that can be applied to all programs are likely to 
lead to high false positive/negative rates, since the sequence of system calls is normally specific 
to each program. We investigated approaches that are likely to scale better and provide more 
accurate detection. 
We began by making some simple models based on listing the files accessed by particular users. 
This type of model captures a normal working set for each user. By hypothesis, users who make 
a sudden large-scale change to their working set might be behaving suspiciously. 

Our results suggest that the typical user does have a fairly static working set of files. A given 
user is likely to access some set of files {A,B,C,. . .} with characteristic daily frequency. We 
have a model for each user that includes the average number of daily accesses to these files. 

However this set is not completely static, and both the number and the percentage of accesses to 
each file in the set can vary somewhat. Figure 1 to Figure 5 illustrate that the percentage of files 
accessed per directory for each user does not stay constant over time. In fact, it vanes over a 
large range. (We show accesses to directories, rather than individual files, in these figures 
because it is easier to view graphically). There are a very large number of files, many of which 
have very few accesses, and it is hard to represent what is going on for individual files on a chart. 
The characteristic results are the same for files as for directories.) 

Figure 1 shows the number of times files in particular directories were accessed by one user over 
the course of several days. There are obvious large deviations from day to day, despite all the 
behavior being proper. Figure 2 shows the same data plotted as a percentage of total accesses. 
As Figure 3 shows, even a simple count of number of files accessed per day varies widely. The 
same results apply to other users. Figure 4 and Figure 5 show the percentage and total number of 
file accesses for a second user. These vary even more. Other results for other users were 
similar. 

One reason for this variation is that the file usage depends heavily on which processes were 
executed. For example, when a user runs some file "A" a bit more, the file usage will change 



dramatically if the process opens many files. An example of such behavior is when the process 
needs to open different configuration files, or the same configuration files repeatedly. Thus, if 
we build a system based on the distribution of files accessed, the false positive/negative rate will 
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Figure 1. Directories accessed by one user over several days. 

Another reason that this model is ineffective is that the number of files opened per user per day is 
on the order of tens of thousands. (One user, during one day of the trace, opened nearly one 
million files.) Thus, an exploit that needs to only open a few files to succeed can fool the 
system, since it will not have any noticeable effect on the distribution of file accesses. 

Models based on accesses to individual files are somewhat more indicative if we apply a little 
more statistical analysis to the data. By including the standard deviation of the number of daily 
accesses to each file in the model, we can more accurately signal real changes in behavior. Thus, 
when a day's accesses to a particular file fall more than 50% outside the model's standard 
deviation of the number of times each file was accessed, it signals a real change in user behavior. 
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Figure 2. Percentage of files accessed in various directories by one user per day. 
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Figure 3. Total number of files accessed by a user over several days. 

An analysis of our traces suggests that in most normal cases, when a user's working set behavior 
varies far outside the standard deviation of normal behavior, it is because the user is working in a 
new area of his own home directory. Typically, a user's home directory contains files created by 
the user and completely under his control, so changes in behavior in subdirectories of the home 
directory are generally not suspicious. Nothing the user does with these files can compromise 
the security of the machine. This observation shows that applying pure statistical measures to 
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the problem of detecting insider threats is insufficient.  Adding a little knowledge about what 
constitutes safe and dangerous behavior improves the accuracy of the system. 
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Figure 4. Percentage of directories accessed by User B over time. 

As alluded to in Section 2, we traced the behavior of some special daemon users. On a typical 
Linux system, some special user IDs are created to handle system activities that benefit all users 
working on the machine. These special IDs include nobody, xfs, and several others. Our 
analysis showed that such non-human users have very rigid working set behavior patterns. For 
example, the nobody user typically has 23.53% percent of his open system calls for the file 
/etc/hosts, 11.76% for /etc/ld.so.cache, 5.88% for /proc/net/tcp, and so on. These special users 
typically have important system privileges, and thus are often a target of attackers. However, 
since their behavior can be so rigidly characterized, we can easily detect when attackers have 
gained access to these privileged accounts. Even slight deviations from their normal patterns 
will be recognizable. Figure 6 and Figure 7 show the file access patterns for the "bin" and "xfs" 
users. Note the high predictability of which files will be accessed and in what proportions. 

Early in our trace analysis work, we realized that keeping information about process trees would 
be vital for proper detection of danger. In many cases, the file access profile of a program is 
even more telling than the file access profile of a user. When an insider is seeking to 
compromise a privileged program, he is likely to force it to behave in uncharacteristic ways, 
which may be reflected in its file access profile. If the program is compromised, chances are 
good that the attacker will use his newfound privileges to exercise the program differently than is 
normal. 

Our analysis shows that 92% of the processes traced have a fixed list of files that they access. In 
some cases, the percentage of accesses by the process to different files on this list varies, but 
rarely by more than 20%. For this large class of processes, an attacker will have relatively little 
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room to operate after he has compromised them, since a detection system will rapidly recognize 
that files are being accessed outside of the fixed list, or files on the list are being accessed in 
improper proportions. 

This information allows us to detect when a process has forked off a child process when it 
usually does not do so. Many privileged programs are inherently capable of doing very limited 
things, but if the attacker can convince them to fork off a general execution shell under their 
privileged identity, compromising the program can gain the attacker general privileged access. 
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Figure 5. Total number of files accessed by User B over time. 

On the other hand, a model based on observing the percentage of file accesses per process was 
not successful. Just as with the per-user approach, the percentage varies too much to be useful. 
Many processes open a large number of files, obscuring which variations are significant. To 
determine which variations are significant would require the system to understand the semantics 
and use of the files accessed 

The list of possible child processes for a given process is nearly as predictable and stable as the 
process's list of files accessed. Our analysis of traces showed that more than 90% of all 
programs run in the traced environment have a fixed list of possible child processes. (See 
Figure 8.) In other words, most programs will only create a limited and highly predictable set of 
child processes. For programs in these classes, observing them create a child who is not in their 
normal set is a sign of very suspicious behavior indeed. 

Process creation behavior allowed us to develop other models that are useful in detecting 
suspicious user behavior. For example, just as users have characteristic working sets of files 
used, they have favorite programs. Our traces show that the frequency with which particular 
users worked with these programs was quite stable. If a user decides to start misbehaving, in 
many cases he is likely to use different programs to do so. If he needs extra privileges, he will 
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have to find vulnerabilities in privileged programs, which will generally require him to cast his 
net beyond the normal set of programs he works with. The most common way of doing so is 
running attack toolkits that probe a large number of programs, most of which are not used by 
typical users Such behavior would be far outside our models of proper behavior. Even if the 
user is working within his normal privileges, but in a dangerous manner, there is a good chance 
that the damaging acts he intends to perform will cause him to use programs he normally does 
not use, or at least use his favored set in different proportions. 

The models created for this project were simple and were thus able to be stored and accessed in 
straightforward ways. For example, the model describing which processes were commonly 
children of other processes could be represented as a simple set of relations. Each relation is 
defined as (X yl y2, .., yn}, where X is the program name and y4 is an authorized child. For 
example, a valid relation is {netscape, netscape}. This specifies that the program 
netscape can execute another netscape, but nothing else. The system reads the input file 
and stores it in local hash tables. Whenever a process attempts to execute a child, the system 
compares the child name against its database. If the child is not a legitimate process, the system 

will raise an alarm. 
Other effective models are of similar simplicity in their representation and use. This simplicity is 
a desirable characteristic since it makes the system faster and uses less memory. Also, a simple 
system is likely to have fewer bugs than a complex one. We kept these principles in mind when 
designing and choosing models, and were pleased to find that we could obtain good results with 
comparatively simple models. 

After adding tracing of process creation behavior, we added an analysis of common attacks used 
by insiders to gain improper privileges.   We examined these attacks to discover what their 
patterns of file access and process behavior would be, so these patterns could be characterized 
and differentiated from our models of proper behavior.   Analyzing common attack tools that 
exercised buffer overflows and other methods of improperly gaining access suggested further 
signals to watch for that would indicate possible problems.   Generally, our models based on 
analysis of attack tools are examples of misuse detection, but some are more accurately 
described as anomaly detection.   For example, some attacks require repetitively running 
programs that have flaws that occur probabilistically, until the flaw happens and the attacker 
gains control. By counting the number of typical executions of particular programs over time for 
individual users, we can easily determine that a user is trying this technique. 

Another useful activity that we had not originally considered was to examine the length of 
arguments provided to system calls.  Most frequently, arguments provided to system calls are 
short, even if the interface allows much longer arguments. Buffer overflow attacks, one of the 
most'common methods used to gain extra privileges improperly, usually involve providing 
extremely long arguments to system calls in the hopes that they will handle long arguments 
improperly. This technique exemplifies misuse detection, though it also points out that misuse 
detection techniques can also have false positives.   In some cases, a proper system call may 
require a very long argument, such as a file open that specifies a full pathname from the file 
system root through seven or eight subdirectories. 
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One useful enhancement to our research is that of examining and analyzing the data provided to 
these system calls. For a buffer overflow to cause a security compromise, the attacker must write 
a system call into the stack that alters the flow of control to a program giving him general access 
to the machine (such as a shell). Since the system call must be represented as an actual machine 
language instruction that causes the transfer of control, the argument used in the system call 
being attacked must contain machine code. Machine code is generally very different in its 
characteristics than proper arguments to system calls, so one approach to detecting possible 
buffer overflows is to search the arguments provided to system calls for possible machine code. 
If machine code is detected, the system call is very likely trying to exploit a weakness in the 
program being run. More work is necessary to determine exactly how one would use this 
technique in real systems, but it seems promising. 
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Figure 6. File usage by "bin" user. 

Analysis of the reasons for normal behavior also proved helpful. For example such analysis 
revealed that sometimes considering the correlation of accesses to different Ales was useful. 
Many programs access files in particular patterns, first file A, then file B, then file C, and so 
forth If a user runs such a program multiple times, we expect to see correlations between the 
number of user accesses to files A, B, and C. Speaking practically, if a user typically spends 
much of his time running compilations, we expect to see correlations between file usages that 
match compilation correlations. If such a user decides to misbehave, chances are he wil start 
doing something other than compilations. Even if his misbehavior tends to access largely the 
same set of files, the change in correlations between the number of accesses to various files can 
signal a shift in user behavior. 
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Figure 8. Processes' parental patterns. 

Also user file access behavior is time varying. We see different statistics at 3 a.m. in the 
morning than at 3 p.m. in the afternoon, and weekend behavior is characteristically different 
from weekday behavior. A real system would need to take these effects into account. 

We did not make use of all information that we gathered in the trace. For example, none of the 
models we developed made use of the read and write system calls that were traced. Dealing with 
files at the level of simple access (signaled by an open) is much easier than analyzing the effects 
of the more detailed read and write system calls, so we started building models without using the 
read/write calls. As discussed above, we were able to build very effective models with more 
limited information. We have considered augmenting those models with detail related to reads 
and writes and we believe that a full production system might want to observe reads and writes 
for at least some important cases. However, using this data proved unnecessary for this phase of 
the research (Also, as noted later, there are serious performance penalties with tracing and 
analyzing reads and writes, so a system that can succeed without watching them will be 
preferable to a system that requires them.) 
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5. Performance, Related Work and Future Work 
We did not complete all the milestones outlined in the original plan. However, we believe that 
the work we report here meets the substantial purpose of the project, which was to demonstrate 
that easily gathered data on file system activity could offer great leverage in detecting insider 
threats. We will describe here our performance against each milestone in the original project, 
describe how certain milestones were not completed, and discuss why their purpose was met by 
other aspects of the research. We will then discuss how this research could be further developed 
to help defend against insider threats. 

5.1   Performance Against Plan 
The original proposal contained six milestones, reproduced here: 

1. The start of our tracing program. We have existing tools, but expect they will need minor 
enhancements to gather the information needed for detecting insider threats. We will meet this 
milestone at the beginning of the second month of the project. 

2. The completion of the first tracing cycle. We plan to trace several users for one month, so 
this milestone will be met at the end of the second month of the project. 

3. Development of the code to support several different methods of analysis of the traces and 
ongoing activity. We will meet this milestone at the end of the fourth month of the project. More 
such code will be created on an ongoing basis. 

4. Development of the simple monitoring system that watches current behavior and compares it 
to the models derived from the traces. We will complete this milestone at the end of the sixth 
month of the project. 

5. The initial set of results from running the system live, against normal behavior and artificial 
insider attacks. This milestone will be completed at the end of the eighth month of the project. 

6. A final report and demonstration of the complete system, with improvements based on the 
results of earlier milestones. This milestone will be completed at the end of the twelfth month of 
the project. 

Milestones 1 and 2 were fully met, and actually exceeded. We started tracing before funding 
was finalized for this project, and continued through the end of the project. Instead of gathering 
one month's worth of data, we gathered nearly two years worth. As mentioned earlier, this 
encompassed nearly 1.5 billion file operations, including all file opens, closes, reads, writes, 
creates, deletes, renames, metadata reads and writes, and other operations, as well as process 
creation and destruction information. To our knowledge, this is the most extensive file trace of 
its kind ever taken. After proper sanitization of the trace data, it will be made available to the 
research community via the web. 

This extensive amount of data tracing allowed us to achieve a higher confidence about our 
results than a single month's trace would have permitted. Also, it allowed us to capture effects 
that we otherwise would not have seen. As mentioned in Section Error! Reference source not 
found., real user behavior tends to change over time, but on a fairly large time scale, on the order 
of longer than one month. A single month's traces would have captured little of this effect. 
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Milestone 3 was also fully met. This milestone involved development of tools to analyze our 
traces While we had built trace analysis tools before, we expected to need new tools to fit our 
nurooses here and indeed we did. We built various tools to allow us to automatically extract the 
models described in Section Error! Reference source not found, from the extensive traces we 
gathered. For example, determining the set of files typically used by a particular process 
reauired us to scan the traces for various instantiations ofthat process, find all subsequent file 
activities related to each instantiation, and collate the resulting data Each model described in 
section Error! Reference source not found, required this effort, as did a number of models that 
moved ineffective and were hence not discussed in Section Error! Reference source not 
found As also expected, we determined part of the way through our tracing activity that we 
needed to add some features not present at the start of tracing, such as tracing activities by the 

root user. 
Analyzing large traces is computationally expensive. The analysis code needs to build large 
tables that take up a lot of memory, and must perform I/O to read each record being analyzed. 
For this reason, the numbers mentioned here cover only the last six to nine months of the trace, 
rather than the full period. Even with this limited coverage, running an analysis on a single user 
to get information on his patterns of file access required a full night. 

One component of this milestone, whose importance and difficulty we underestimated, was 
implicit in the list of milestones, but not stated outright.   Merely analyzing the traces and 
extracting data for models was of no value if we did not develop useful models.   We had 
expected that some very simple models would be fruitful, but the actual data in the traces showed 
us that we needed a broader set of more sophisticated models. We went through many possible 
models finally settling on those described in Section Error! Reference source not found.. 
Merely'having the models and being able to pull data out of the traces was still not enough, 
however We had to analyze that data and understand its implications to determine that we really 
could use it for our purposes. For example, in Section Error! Reference source not found, we 
indicated that in excess of 92% of all processes traced had a fixed list of files that they accessed. 
In addition to gathering the data showing us the list of files used by all of the traced processes 
we had to analyze the lists. We then had to determine how to tell, within the fixed file lists, if 
there was substantial variability in which files were accessed from run to run. 

Milestone 4 was not performed as originally envisioned. We did some work to create a system 
that could observe and detect attacks in real time, but we did not take it to the point where it 
could be reasonably run in the same way that we ran the tracing code   We were able to use the 
limited system to detect deviations from our model caused by a particular buffer overflow attack 
and by an attack based on improperly creating symbolic links to sensitive files. The momtonng 
svstem did indeed signal a problem here. But instead of extending this system to the full extent 
implied in this milestone, we performed a more extensive analysis of several real vulnerabilities 
and attack tools.  This analysis gave us a more accurate picture of the kinds of activities we 
needed to recognize as possible insider threats.   Several of the models presented earlier were 
developed after examining attack code. 

Actually getting real attack code to run on our system was more challenging than we had 
anticipated While bugs like buffer overflows are rather common, finding a version of a program 
containing a vulnerability that ran properly on our current Linux kernel was something of a 
chore. Like many other responsibly designed and maintained systems, when buffer overflow 
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problems and similar security bugs are discovered in Linux, they are quickly patched and the 
system developers seek to ensure that the faulty code is no longer available. For most purposes, 
people do not want code with known security flaws. Because our tracing facility requires kernel 
patches we were limited to any buggy code we could track down that ran under the particular 
version'of the Linux kernel we were using, or a substantially similar version. We did eventually 
find a few programs to actually test with, however, including the buffer overflow attack and the 
symbolic link attack mentioned above. The difficulty in finding large numbers of attacks that we 
could actually run on our system was one factor that caused us to devote less time to 
implementing a monitoring system than originally planned. 

Since milestone 4 was altered, milestone 5 was also altered. We did run some attacks against the 
system but did not install it on production machines for regular use. Instead, we used the time to 
develop more models, gather more traces, perform more detailed analysis of the traces, and to 

study more attack tools. 
This report represents milestone 6. This milestone also includes a demonstration, but we have 
not had a suitable opportunity to demonstrate the system to DARPA. If desired, we can do so, 
but we do not think it is a particularly valuable effort. The goal of the research was to answer 
this question- can information about file access behavior be used to detect insider threats? We 
believe that giving a simple demo of one or two attacks being detected by a very minimal system 
does not really shed much further light on that question. 

Performing this research required us to overcome many technical difficulties. The traces we 
collected contained a great deal of material, much of which proved to be unhelpful in detecting 
threats We had to differentiate between the useful and useless information and remove the latter 
before analysis could proceed. Many of the useless records could be categorized and removed 
fairly mechanically, once we had determined their lack of utility. Examples include references to 
library files (too common to mean much of anything), references to temporary files (generally of 
no security interest and transitory in nature), and references to files in users' home directones (of 
no security interest). However, it proved impossible to predict and categonze all such files 
ahead of time. We thus had to do much hand analysis of the traces to find and remove 

unimportant files. 
Users tend to be quite dynamic in their behavior. As a result, much of the information captured 
in the traces was not easy to incorporate into models. The fact that our users work on laptops 
that are sometimes connected and sometimes not connected exacerbated this problem. When 
connected, users interact with servers and other machines, leading to different behaviors than 
when they'are disconnected and must rely on the local resources of their portable computers. We 
also found it difficult to find patterns of when our users did and did not work, making window- 
based analysis tricky. 

The traces are huge. There are millions of trace records for every day. Even when known 
useless records are deleted, the processing time required to reduce a trace to a set of useful 
models is large. It takes six hours on a fairly powerful computer to analyze a three-month trace 
for a single user. Limited memory causes much swapping to disk, which slows the analysis 
down. Every time we needed to test a new idea or an alteration to a model, this process typically 
had to be repeated. In a working system where a particular set of models had been chosen for 
observation, this cost would be paid once and lower costs paid to incorporate data on an ongoing 
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basis, so this difficulty is not necessarily a deficiency of the technical approach, but it did require 
a great deal of time during the research. 

As noted earlier, for a given version of the kernel and associated programs, only a certain set of 
exploits were actually available for testing. We could not usefully test with exploits that work 
for other versions of the kernel or application programs, because such exploits might never 
succeed in getting to the point where the system could be expected to detect their misbehavior. 
They would crash the application or exit in other ways before they did anything suspicious. 
Generally, responsible parties do not make exploit code readily available, so even those exploits 
applicable to our system were not necessarily available in a usable form. We did not want to 
spend a lot of our time trying to reproduce or discover exploits, so we were forced to test with a 
relatively limited set. 

While we worked hard to get good traces, sometimes mistakes occurred and traces were 
corrupted. Analysis of corrupted traces results in invalid models, if it completes at all. Also, a 
corrupt trace for a particular user in the middle of the tracing period puts a boundary on how long 
a continuous period of behavior was available for analysis. As our results show, in some cases 
the system's performance improves when a longer period of observation is available, and thus 
corrupt traces limited our ability to investigate such issues. 

Each of our machines had a slightly different configuration. They all ran they same kernel, but 
other details differed. For example, a given user's home directory might have a different name 
on different machines, despite being the same actual directory. These differences sometimes 
required manual corrections to traces to allow data from different machines to be compared. 
Generally, we did not foresee such problems, and thus had to discover the problem after it 
occurred and go back to fix it. 

These are far from the only technical difficulties we faced, but they give a sense of the kinds of 
problems we overcame, beyond the challenges of dealing with the basic research issues. 

5.2 Performance of the System 
While this research was intended to prove the concept of detecting insider threats by examining 
file system traces rather than building a working prototype, several aspects of feasibility required 
some degree of design and testing of a working system. We report some of those results here. 

Part of the thesis was that the false positive and false negative rates of a system based on 
modeling file system activity would be reasonable. We do not claim that the results obtained so 
far offer definitive evidence on this question, but we have built a working system, run it on 
normal activity, and tested it against real attacks, so we have some data to report. 
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Figure 1. Number of buffer overflow vulnerabilities for several operating systems. 
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Our tests against live attacks concentrated on buffer overflows, though we also demonstrated our 
ability to detect attacks of other classes, such as timing attacks using improperly created links. 
Buffer overflows are commonly recognized as one of the leading causes of security flaws in 
modern systems [FordahlOl]. In 1998, over two-thirds of all of CERT's vulnerability advisories 
were due to buffer overflows [SchneierOOb]. Figure 10 shows that buffer overflow attacks are 
common in various operating systems, with a few to a few dozen appearing in each system every 
vear The trends on this graph do not suggest they are going away. Windows systems are also 
commonly afflicted with buffer overflows. CERT advisory CA-2002-04, released in late 
February of 2002, describes a buffer overflow in Internet Explorer under all Windows operating 
systems [CERT02]. Thus, merely solving the problem of insiders using buffer overflows to 
obtain extra privileges is valuable. 

In our tests, the system has low false positive and false negative rates. The false positive rate is 

False Positive Rate for the Buffer Overfow Detection 
System 

AWSWWWWffllJJMAWJWMW! 

1 Week 1 Month 2 Month 3 Month 5 Month 

Observation Period 

Figure 2. False positive rate for buffer overflow detection system. 

dependent on how long the system has observed user behavior and which kinds of exploits it is 
capable of detecting. As shown in Figure 11, in our environment, with a two-month observation 
period and a system designed to detect buffer overflow attacks, the system achieved a zero false 
positive rate. This result is obviously very heartening, but it should be tempered with realism 
about whether the system can continue to achieve that rate when expanded to handle a broader 

range of attacks. 

Testing for false negatives was somewhat more difficult. A false negative can only occur when 
an attack occurs and is not detected. Our system deterministically detects (or does not detect) 
particular attacks. Thus, to determine our system's false negative rate, we needed a collection of 
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different attacks to test it. In practice, each different version of an operating system has a 
different set of vulnerabilities. Our system worked on a particular version of Linux with 
particular versions of shared libraries, applications, and associated software. Thus, there were 
only a limited number of real exploits to test against the system. Also, responsible people do not 
make attack code readily available, so a working version of an attack was not always available. 
Spending time trying to find additional exploits ourselves or developing working code to 
exercise reported attacks seemed like a poor use of research time, so we did what we could with 
the available set of attacks on one version of Linux. To maximize the number of available 
attacks, we chose to test this with Linux Redhat 6.0, since we found more exploit code for that 
version than any other candidate version. 

We were able to download and perform seven exploits for Redhat 6 successfully. There are 
many more exploits for buffer overflows, but they required different versions of libraries and 
environmental settings. The system detected six of these seven exploits. Bear in mind that the 
system was not designed to look for specific signatures of any of these exploits - it looked for 
patterns of behavior that commonly occur when such an exploit is attempted. Many other types 
of buffer overflows would be detected by this system without any alteration to its code or 
models. 
The model used to detect the buffer overflows uses the observation presented earlier that 90% of 
all programs have a fixed set of child processes. We were unable to detect an exploit operated 
on a program not in that category. This exploit attacked xterm, a program that must inherently 
be able to fork and execute a wide and expandable range of other processes, since it provides a 
basic windowing capability to the user. Other models might succeed in catching this exploit. 

Thus, by a simplistic analysis, our false negative rate is 1/7* of all attacks. However due to the 
small number of exploits being tested, this simplistic analysis does not reflect our true false 
negative rate. Being extremely conservative, one could estimate the true rate as 10%, since the 
model in use covered 90% of all programs. However, that analysis presumes that buffer 
overflow vulnerabilities are equally present in both the set of programs covered and the set not 
covered. There is no evidence on whether that is true. A scientifically meaningful false 
negative rate would require a much more exhaustive study of possible attacks. 

5.3 Related Work 
Much of the related work in this area is in the field of intrusion detection systems. Such systems 
have a somewhat different goal than our work, but in some cases there are relationships to the 
methods. 

The history of intrusion detection goes back at least to the late 1980s [SSHW88]. Generally, 
intrusion detection systems are based on vulnerability detection, anomaly detection, or some 
combination of these approaches. Vulnerability detection is based on looking for known 
problems. This approach tends to allow accuracy in detecting real problems (since only 
behaviors that try to exercise known vulnerabilities are flagged), but can only detect already- 
known attacks. Such systems must be updated periodically to incorporate knowledge of new 
attacks. Anomaly detection is based on changes in how the observed system behaves. As a 
result, it can detect previously unknown attacks, but it is more susceptible to misidentifying 
proper (but new) behavior as an attack [Escamilla98]. 
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RIPPER [Lee99] is a tool that used data mining approaches for automatic and adaptive 
construction of intrusion detection models. Several types of algorithms were particularly useful 

for mining audit data: 

• Classification: Placing data items into one of several predefined categories. The 
algorithms normally output classifiers, for example, in the form of decision trees. 
Sufficient amounts of normal and abnormal data need to be gathered to teach a classifier 
to label or predict new, unseen data as belonging to the normal or abnormal class. 

• Link analysis: Determines relations between fields in the database records. Correlation of 
records can serve as the basis for constructing normal usage profiles. An example is the 
correlation between the command and argument in the shell command history data of 
users. A programmer may have emacs strongly associated with C files. There are some 
obvious similarities to our work here, though Lee's approach is more general and does 
not look as deeply for patterns in file access. 

• Sequence analysis to model sequential patterns. These algorithms can determine which 
time-based sequences of audit events occur frequently together. These frequent-event 
patterns provide guidelines for incorporating temporal statistical measures into intrusion 
detection models. For example, from the audit data, analyzing network-based denial-of- 
service attacks requires several per-host and per-services measures. 

RIPPER was funded by DARPA, and its creators make strong claims for its performance. 
However, they concur that in order to detect new or novel intrusions, anomaly detection has to be 
employed. RIPPER, as a signature detection tool, does not produce signatures of a sufficiently 
general nature.  This project is similar to our project in that it also looked at system calls.  A 
major difference is that it does not take into account the arguments to the system calls, such as 

file names. 
[KRL97]   suggests that the intrusion detection system should focus on the correct security 
behavior of the system, or more particularly on the behavior of a security-privileged application 
that runs on the system as specified.   The authors have designed a prototype that reads the 
security specifications of acceptable behavior of privileged UNIX programs (e.g., sendmail) and 
checks the audit trails for violations of these security specifications. 

This system also looked at the system call traces and tried to derive a specification for privileged 
UNIX programs (based on inodes, symlinks, etc.).   Their work was not as tightly focused on file 
system behavior, and concentrated on the proper behavior of individual programs. Our approach 
looked more generally at all aspects of file access behavior as indicators of proper or improper 

accesses. 
NADIR is another intrusion detection system that uses file system activity as an input [Jackson 
92]   Like other intrusion detection systems that consider file system activity, it works off of 
information stored in normal system logs.  This information is far more limited than what we 
gathered, and thus their analysis of it is equally limited. 

There are a vast number of proposed, designed, and built intrusion detection systems [Axelsson 
99]   To our knowledge, none have used file system traces to the extent that we have, and none 
have focused on applying file access analysis techniques to detecting misbehavior by insiders. 
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5.4   Future Work 
This work was intended only as a proof of concept for the idea that insider misbehavior causes 
noticeable changes in file system activity. Clearly, our results show that it does do so More 
work on better models and an examination of further classes of attacks could provide further 
evidence of this kind, but we feel this concept has been so sufficiently proven at this stage that 
additional evidence is superfluous. 

The obvious next step in this research is taking the very simple system that successfully detected 
a few attacks into an actual system that detects insider threats using this method, possibly 
integrated with other methods. To go beyond the already-completed proof-of-concept to this 
next useful step is a large amount of work, since the added value will be augmenting a real 
system with a facility that compares ongoing file system accesses to models of proper behavior. 
Doing so requires a reasonably quick way to determine if the new accesses suggest problems. 
One result of our existing research is that a single model of file system behavior will not be able 
to successfully trap all problems, or even all problems in broad classes that are already well 
understood. Thus, the system would need to compare ongoing activities against more than one 
model, and possibly against quite a few. 

The system could be designed to perform checks in real time or to do analysis of previously 
logged data at its leisure. The sample system we built checked in real time, but it was only 
looking at models suitable for detecting the particular attacks tested, and we did no work to 
determine how expensive it would be to use in normal operations. An obvious question for real- 
time checks is how much the system would slow down normal access. If the checks are made 
before the file operation is performed, there would be a delay on every operation checked. The 
system could test only samples of events, incurring a performance penalty less frequently, but at 
the cost of possibly missing important warning signals because the events that would bring them 
to light were not in the selected sample. Depending on the type of models that prove helpful, the 
system could check against a smaller set of system calls. For example, none of the models we 
developed used any information about read and write operations. Since reads and writes are 
more frequent than file opens, which we do observe, the system could only be invoked to analyze 
open operations and a few other key system calls. Perhaps the costs would be reasonable if only 
applied occasionally. 

Running the analysis after the fact has two problems. First, the signaling of problems would be 
delayed, possibly allowing the misbehaving insider to perform substantial mischief before the 
system signaled any problem. Second, the approach of catching up later is only possible if the 
system has reasonable amounts of idle time at some reasonable point in the future. If not, the 
analysis will never catch up with the ever-increasing logs of data. If the system is run primarily 
on single-user workstations, in most situations there would be ample idle time to allow large 
amounts of analysis. For heavily utilized servers, however, there may never be enough time to 

analyze logs. 
In either case, there is clear value in determining the minimal set of tests required to determine if 
each file access event represents a threat, while creating a sufficiently low rate of false positives. 
The traces we have gathered can be used to test any candidate set of models for false positives, 
and to evaluate the cost of a system during times of normal traffic, but they have the flaw that 
they include no attacks. One could create a test suite of attacks from known attack code (keeping 
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in mind the difficulties described earlier of getting any particular piece of attack code to work on 
a given system), but at best, this method would only validate how well the system does against 
already known attacks. This difficulty in measuring the hypothesized system is by no means 
confined to this particular research. A common characteristic of security research is the 
difficulty in measuring its effectiveness. 

Another issue for future work is that our traced data represents a single and rather unusual class 
of users. Most of them were computer science graduate students, and students in systems fields, 
at that. Such students are vastly more sophisticated and computer literate than the typical user, 
so there is good reason to believe their behavior is not characteristic of most users. However, we 
believe that the differences are more likely to work in favor of our method than against it. 
Sophisticated users are more likely to do new things, install new software, and take shortcuts that 
may appear suspicious than unsophisticated users. Experience with typical home and office 
users tends to show that they have a few favored programs and otherwise make little use of the 
general capabilities of their computers. If that observation holds equally well at the lower level 
of file system access, these typical users will have more regular behavior than computer science 
graduate students, so the models that result will be more accurate. While this argument is 
comforting, it is based on conventional wisdom and informed speculation. Ultimately, it would 
need to be verified with real data and experience. 

One piece of future work that we intend to do is to make our traces available on a web site to 
allow other researchers to benefit from our work. While making traces available might seem 
straightforward, the fact that we wish to preserve a reasonable degree of privacy for the users 
whose activities were traced requires us to perform proper sanitization on the traces before 
releasing them. Such sanitization would require, at a minimum, concealment of user identities, 
but should also obscure the file names. However, if one obscures all file names through a 
randomization process, valuable information is lost with little resulting privacy benefit. For 
example, there is no particular privacy requirement to conceal the normal sequence of operations 
when the mail daemon starts downloading messages, but some researchers might find it very 
helpful to pinpoint these events in the trace. Some care will be required to decide exactly how 
much to sanitize the traces to allow the best tradeoff between research benefit and user privacy. 
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6. Conclusions 
This research project successfully demonstrated that a user's file access behavior can be 
analyzedTodetermine when he stops behaving properly and starts engaging in suspicious 
acuity The performance costs of gathering the data are acceptable, demonstrated by the fact 
mTover a period of two years we received no complaints related to system slowness. (On 
previous projects where the experimental system was not sufficiently fast our local users have 
Tever been reluctant to complain about the impact of testing on their work.) The amount of data 
wTga^ered was vast, but a real system need not keep all gathered data, and could probably 
Teduce batches of traced records to model data frequently. Further, some of the data we traced 
has so far, gfven us no advantage in detecting insider threats, so a real system would not need to 

gather this data. 
Demonstrating that the method can be used in an experimental environment and[actually making 
Ü vTrk in a real environment are two different problems.  We have only addressed the first 
M^re research and development will be necessary to deal with the second.   This project 
essentially suggests that this additional research and development would be worthwhile. 
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Appendix A: Samples From File Traces 

In the following paragraphs we provide information about the meaning of each field in the trace 
lines, and give example lines from the file system traces gathered for this project. 

Each trace line represents one system call. Most lines represent file-system-related system calls, 
but we also traced other system calls related to process execution and a few other things. Some 
of these extra system calls were traced because we needed to know that those particular system 
calls were invoked; some were traced because they contained information needed to properly 
analyze the other lines in the trace. 

Each line has the same format. The data was stored in ASCII, which allowed us to analyze it 
more easily by hand. The debugging value alone of this choice made it worthwhile, but it also 
permitted easier analysis of what a string of related system calls were actually doing. We paid a 
cost in the amount of memory used and the time required to create a trace line, but the benefit 
outweighed the cost. Each line in the trace consists of several fields, separated by white space. 

Fields of each line 
1. SequenceNo. A count of how many system calls have been made since the start of the trace. 
A gap in sequence numbers between adjacent lines in the trace means that there are some system 
calls not represented in the trace. These unreported calls could be: 

• Untraced types of system calls 
• System calls invoked by the insider threat detection system itself 

2. UID. ID of user who executed the system call 

3. PID. Process ID of the process that executed the system call 

4. Process Name. The name of the program represented by the process. This information is not 
readily available in the kernel in all cases, so the system merely does its best to provide the 
string. Where the name is not available, this field is filled with "??". The most common such 
case is a process that was forked before the observation component of the insider threat detection 
system was started during system boot. 

5. Order flag. An "A" in this field means that the entry is recorded after the system call is 
executed. A "B" means that it is recorded before the system call is executed. Generally, we 
record the system call after it has executed, because (as you see below) we wish to include the 
return value from the system call. Some system calls, however, do not return. For such system 
calls, we record their entry before they execute. 

6. Timestamp. A timestamp in seconds and milliseconds 

7. String describing the system call and its arguments 

8. Return value of system call 

9. Repetitions. Sometimes the same system call is repeated several times with no intervening 
system calls. This optional field keeps a count of how often the system call was repeated, with 
only exact repetitions counted. If the field is absent, the system call was performed once. If the 
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field is present, it was performed the number of times indicated. There will not be separate lines 
representing each repetition, in this case, just the count. The most common use of this field is to 
compress many repetitions of read system calls, since it is common to repetitively read a file one 
block at a time until the entire file has been processed. This optimization greatly reduces the size 
of the traces. 

One example line 
104 UID 0 PID 812 /sbin/syslogd A 1008288727.437576 open(7etc/ld.so.preload", 0_RDONLY, 0) = -1 (2) 

This was the 104th system call since the trace started. The UID was 0 (the root user). The PID 
was 812. The process that performed the system call was /etc/syslogd. The next field, 
containing "A," indicates that the record was created after the system call returned. The long 
number is a timestamp. The system call was open ("/etc/ld.so.preload", O_RDONLY,0), 
meaning it was a call to open a file for read. Since it returned -1, the system call failed. The "2" 
in parenthesis at the end of the line indicates that the system call was made twice in a row in 
exactly that form, with exactly those results. Presumably, upon failure to open the file, syslogd 
made some adjustments and tried again, only to fail again. At this point, either it gave up or 
made further adjustments that allowed it to succeed. (In which case, the next line in the trace 
would be identical, except that the return value would be 0, not -1.) 

Traces representing normal activity 

The lines below are extracted from a trace of normal activity. In particular, it is activity 
occurring immediately after the machine is booted and a fresh trace file is started: 
0 RESTART (scratch) at 1008288727 Thu Dec 13 19:12:07 2001 
32 UID 0 PID 812 ?? B 1008288727.376532 execve("/sbin/syslogd") = 0 
76 UID 0 PID 812 /sbin/syslogd A 1008288727.437433 execve("") = 0 
104 UID 0 PID 812 /sbin/syslogd A 1008288727.437576 

open("/etc/Id.so.preload", 0_RDONLY, 0) = -1 (2) 
160 UID 0 PID 812 /sbin/syslogd A 1008288727.437633 

open("/etc/Id.so.cache", 0_RDONLY, 78748) = 3 
216 UID 0 PID 812 /sbin/syslogd B 1008288727.437650 close(3, 78748) = 0 
252 UID 0 PID 812 /sbin/syslogd A 1008288727.437706 

open("/lib/i686/libc.so.6", 0_RDONLY, 5772268) = 3 
308 UID 0 PID 812 /sbin/syslogd A 1008288727.437723 read(3, 1024) = 1024 
344 UID 0 PID 812 /sbin/syslogd B 1008288727.437844 close(3, 5772268) = 0 
380 UID 0 PID 812 /sbin/syslogd A 1008288727.439369 chdir("/") = 0 
412 UID 0 PID 812 /sbin/syslogd A 1008288727.439558 

open("/var/run/syslogd.pid", 0_RDONLY, 0) = -1 (2) 
472 UID 0 PID 813 /sbin/syslogd A 1008288727.439762 fork(812) = 0 
504 UID 0 PID 813 /sbin/syslogd A 1008288727.442123 

open("/var/run/syslogd.pid", 0_RDONLY, 0) = -1 (2) 
564 UID 0 PID 813 /sbin/syslogd A 1008288727.442205 

open("/var/run/syslogd.pid", 0_CREAT|0_RDWR, 0) = 0 
624 UID 0 PID 813 /sbin/syslogd A 1008288727.442593 write(0, 4) = 4 
660 UID 0 PID 813 /sbin/syslogd B 1008288727.442605 closefO, 4) = 0 
696 UID 0 PID 813 /sbin/syslogd A 1008288727.442911 

open("/etc/resolv.conf", 0_RDONLY, 94) = 0 
752 UID 0 PID 813 /sbin/syslogd A 1008288727.443008 read(0, 4096) = 94 
788 UID 0 PID 813 /sbin/syslogd A 1008288727.443057 read(0, 4096) = 0 
824 UID 0 PID 813 /sbin/syslogd B 1008288727.443077 close(0, 94) = 0 
860 UID 0 PID 813 /sbin/syslogd A 1008288727.443280 

open("/etc/nsswitch.conf", 0_RDONLY, 1750) = 0 

29 



916 UID 0 PID 813 /sbin/syslogd A 1008288727.443333 read(0, 4096) = 1750 
952 UID 0 PID 813 /sbin/syslogd A 1008288727.443468 read(0, 4096) = 0 • 

This trace fragment shows several files being open, read, and written. The files in question are 
opened by a program called syslogd, which is the next program executed in the Linux boot 
sequence on our installation after the insider threat detection system has been started. Note (in 
line  916)  that  the  read()   system call was repeated  1750 times to read all of 
/etc/nsswitch.conf. 

Traces representing attack traffic 

The lines below were captured during an attempt to execute an exploit that attacks a weakness in 
thecron root program. This program is used to run tasks periodically in the background, 
allowing the system or users to schedule tasks for execution in the future. 
785516 UID 0 PID 546 /tmp/cron_root A 1015623540.370271 open("/etc/passwd", 

0_APPEND|0_CREAT|0_WRONLY, 744) = 4 
785564 UID 0 PID 546 /tmp/cron_root A 1015623540.370459 dup2(4, 1) = 1 
785600 UID 0 PID 546 /tmp/cron_root B 1015623540.370501 close(4, 744) = 0 
785636 UID 0 PID 546 /tmp/cron_root A 1015623540.370659 write(1, 44) = 44 

Here, the attacker has previously used a buffer overflow to gain control of cron_root, and is 
now trying to use the root privileges he has obtained to open the password file for writing. This 
is an attack we would catch, because we know that the cron_root program never opens this file 
for writing. Our model would show that the program was using a file it normally never uses. 

In the following trace fragment, we see the attacker trying to cover his traces by removing a 
number of temporary files. The first line shows the execve system call being used to start the 
rm program, which is used to remove files. The lstat, access, and unlink calls are the 
normal steps taken by rm to remove a file. They are invoked repetitively on 
/tmp/cron_echo, /tmp/ce, and /tmp/cron_root, removing those three files. 

789296 UID 0 PID 547 /tmp/cron_root B 1015623540.392235 execve("/bin/rm") = 0 
789632 UID 0 PID 547 /bin/rm A 1015623540.395261 lstat("/tmp/cron_echo") = 0 
789676 UID 0 PID 547 /bin/rm A 1015623540.395367 access("/tmp/cron_echo") = 0 
789720 UID 0 PID 547 /bin/rm A 1015623540.395504 unlink("/tmp/cron_echo") = 0 
789764 UID 0 PID 547 /bin/rm A 1015623540.395555 lstat("/tmp/ce") = 0 
789800 UID 0 PID 547 /bin/rm A 1015623540.395594 access("/tmp/ce") = 0 
789836 UID 0 PID 547 /bin/rm A 1015623540.395639 unlink("/tmp/ce") = 0 
789872 UID 0 PID 547 /bin/rm A 1015623540.395681 lstat("/tmp/cron_root") = 0 
789916 UID 0 PID 547 /bin/rm A 1015623540.395719 access("/tmp/cron_root") = 0 
789960 UID 0 PID 547 /bin/rm A 1015623540.395765 unlink("/tmp/cron_root") = 0 
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File Profiling for Insider Threats 
Contract F33615-00-C-1746 

November 2000 
Contractor's Progress, Status and Management Report 

Line Item 0001, Data Item A003 
Reporting period: 6 November to 30 November 2000 

This report covers the first month of performance under this contract. Due to issues 
concerning administrative details of the contract, we did not begin actual work on the 
contract until fairly late in the month. So far, our activities have been largely confined to 
defining more concrete plans concerning how this research will be conducted. 

Our basic method requires that we digest file traces gathered for other purposes to build 
models of appropriate normal insider behavior. We have a large amount of recently gathered 
trace data of this kind and have produced software that preprocesses the trace to make it 
easier for serious analysis. For example, this software canonicalizes file names in the trace, 
ensuring that all occurrences of the same file in the trace are properly recognized. Since the 
trace records sometimes list file names as full path names from the file system root and 
sometimes as shorter names relative to the current working directory, this canonicalization is 
not trivial. The software also performs other simple cleanup tasks on the traces. 

We will shortly begin work on more carefully defining the models that we will develop from 
the trace. This work will involve moving from the sort of model concepts discussed in the 
proposal to detailed examinations of what information we will need to extract from file trace 
records and what sort of processing will need to be performed to produce the model from that 
information. This work is a necessary precursor to actually building the models. 

We are also recruiting a graduate student to perform the bulk of the research. The success of 
the research will depend in large part on the quality and interest of the student assigned to do 
the research, so we are recruiting very carefully. We anticipate that we will select a graduate 
student from the incoming class of the winter quarter, so our choice might not be completed 
until January. We believe that the startup time for a new student on this project should be 
fairly short, as useful work can begin without the student absorbing too many details of the 
operations of existing software. Thus, we expect to begin development of software 
embodying models of proper behavior in January. In the meantime, we will continue to work 
with the existing traces to ensure that they will contain the information we need in the form 
required. 

To date, we have not spent any contract dollars. We expect to begin charging to the contract 
in December. 
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FILE PROFILING FOR INSIDER THREATS 
UCLA 

December 2000 
BAA-00-06-SNK; FRT Research Topic 2 

Contract F33615-00-C-1746 (LI 0001, Data Item A003) 
1 December - 31 December 2001 

Tpr.hnir.al Point of Contact: 
Peter Reiher 

reiher @ cs.ucla.edu 

1. Introduction and Overview 

This project is investigating the possibility of detecting the misbehavior of authorized 
users by analyzing patterns of file system access. Our thesis is that normal, well-behaved 
access is characteristically different than the forms of access used by an insider trying to step 
beyond his legitimate role. To do this, we must trace large quantities of legitimate access, 
derive models of appropriate behavior from those traces, and compare these models to 

sample misbehaviors. (n. ,c. 
The project is expected to 15 months, overall. We were fully funded at $94,154. 

Major team members are Dr. Peter Reiher, Dr. Geoff Kuenning, and graduate student Nam 

Nguyen. 

2. Project Research Objectives 

We must determine if normal access can be easily modeled across many users and 
across time. We must also determine if improper behavior actually does produce 
distinguishably different file system behavior. 

3. Expected Project Results 

If successful, our project will demonstrate that it is possible to detect important forms 
of insider misbehavior by intelligently observing file system behavior. 

4. Achievements and Issues 

Our progress was relatively slow this month, due to the holidays. Our primary effort 
for the month was dedicated to investigating characteristic patterns of one particular kind of 
attack a buffer overflow. We looked for patterns in the behavior of the fork() and exec() 
system calls, since the most common behavior of an attacker after succeeding in overflowing 
the buffer of a privileged program is to fork a shell from that program. Doing so allows the 
attacker to execute arbitrary commands with the privilege of the attacked program. 

In some cases, the attacked program legitimately issues fork() and exec() system 
calls However, we believe that the legitimate uses of these system calls can be distinguished 
from attack uses by their position in the program's file access traces. In addition to keeping 
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track of which file system calls have been executed, these traces are essentially sets of 
markers of characteristic paths of execution through a program. Other system calls, like 
fork() and exec(), may legitimately occur at particular places in these paths, but are 
suspicious when they occur at other places in these paths. 

We also investigated a tool that purports to perform automatic classification of trace 
data Such a tool would be useful for our purposes, since it would output distributions of the 
occurrences of particular types of system calls and other patterns of behavior. This particular 
tool proved inadequate. It requires huge amounts of data to properly train the program to 
recognize patterns for classification, and it requires a particular table format to be created 
manually before it can do any training. We are unlikely to use this tool. 

Progress on statement of work milestones: 

1.  Tracing program. We have gathered large quantities of file traces. Tracing continues 
on several machines in our office. 

2   completion of first tracing cvcle. Completed. Models have been developed. 

3. Development of code, to support data analysis.  All code that we know is needed is 
completed. We expect periodically to find a need for more such code. 

4. Development of simple monitoring system. This activity is nearing completion. 

5    initial results from running the system live.    Work continues on this milestone. 

6.  Final report.   This final report will be written when all other tasks have been 
completed. 

5. Expenditures 

December expenditures Total: $12,186 
Salary + related benefits and OH: $11,938 
Networking & supplies: $248.00 

Total expended to date: $76,725 (81.5% of funds) 

Remaining funds are adequate to complete all work by contract end (5 Feb 02) 

6.        Program Status 

Contract completion date: 5 February 2002 
Percentage of contract period that has elapsed: 93% 
Total funds that have been expended: $76,725 
Percentage of contract funds that have been expended: 81.5% 
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File Profiling for Insider Threats 
Contract F33615-00-C-1746 

March 2001 
Contractor's Progress, Status and Management Report 

Line Item 0001, Data Item A003 
Reporting period: 1 March to 31 March 2001 

We have made good progress on our project along the lines indicated in the previous month's 
report. We are investigating effective file access models for characterizing proper behavior. 
We are also improving the tools we use to gather and analyze our trace data. 

Investigations continue on the models that describe the proper set of files for particular 
processes to access and the proper set of processes to access particular files. The first model 
analyzes all files that are accessed by a particular type of process (such as an editor, a web 
browser, or a compiler). Since there are multiple invocations of many of these programs in a 
single day's trace, and even more over the course of multiple days, we must eventually 
merge the results from individual runs. Attackers frequently seek to gain privileges or access 
protected data by intentionally misusing programs to make them behave improperly. We 
hope that the list of files used during normal behavior will be very different than those used 

during such attacks. 
For each of these programs, there is likely to be one set of files that is inherently 
characteristic of running that program for any purpose, and a second set closely related to the 
particular invocation. For example, an editor opens a number of libraries and configuration 
files regardless of which file is being edited, but editing your resume obviously accesses 
some different files than those accessed when editing your monthly report. The challenge for 
this model will be to filter out these properly different files from the files that are accessed 
when the attacker is attempting to use the program to compromise the system. 

The second model looks at all programs that ever access a particular file. Merging the results 
from multiple runs of programs is far easier for this model, since the model does not need to 
differentiate the behavior of different runs of a program. This model essentially requires us 
to keep a record of all files touched by any run of a particular program. If the model is 
produced during periods of good behavior, new additions to the list might be the result of 
trying to misuse programs to obtain improper access to files. For example, if the editor never 
normally accesses the password file (which is typical, since it's preferable to use special tools 
to update the password file), suddenly having it do so might be a signal that an attacker is at 

work. 
We expect that this model will eventually be augmented with probabilities of access for each 
program, or counts of how often a particular program accesses a file during a given run, or 
perhaps more sophisticated models of proper program access to the file. In many cases, 
programs access sensitive files for perfectly legitimate purposes. However, they can also try 
to access the same files for illegitimate purposes. These more detailed models may catch 
such behavior.   For instance, perhaps the web browser always accesses a user's security 
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preferences once for read at startup time, to ensure that they are enforced during the web 
browsing session. However, an access for write later in the middle of the session may be a 
sign of trouble. 

We will also be developing other models, as time and ingenuity permit. Until we have a 
promising result, we will continue to work with a single user's trace, as discussed in the last 
report. When we have something that looks good for the single user, we will test it against 
traces of other users to see if it holds up in general. 

Our work with the traces has shown the weakness of some of our tools for dealing with them. 
The traces are very large. One trace for a user for a single day can take up to 200 Mbytes of 
storage in ASCII format. Obviously, we need automated tools for handling this. Our initial 
tools produced the traces in a zip format, but converted them to ASCII format for use. This 
format had the advantage of simplicity, and it allowed our new student to work with plain 
text data until he understood how things worked. However, because the files were so large, 
the actual data analysis was always performed by a program, not by hand. So we were 
converting from a zip format to ASCII to an internal binary format, which was performance 
expensive. 

Now that our student understands the system well, he has altered his analysis tools to extract 
data directly from the zip format, bypassing the ASCII conversions. This change allows his 
tools to run 100 times faster, and allows us to store smaller trace files. Also, handling certain 
special cases is easier in this format. 

Another recent change is that we are now figuring out the process name, rather than 
identifying the process by PID. Internally, operating systems use a process identification 
number (PID) to keep track of processes. The process structure has the name of the process 
available, but dealing with a number is more convenient for the system. When file system 
calls are made, the process identifier attached to them is the PID. By the time that we 
analyze the traces, the internal operating system structures that allowed mapping of PIDs to 
actual names is long gone. Thus, determining that a process was actually Netscape, rather 
than PID 217, is not trivial. 

But it is possible. To permit mapping of PIDs to process names, in addition to file system 
access calls, we have trapped Linux forks and execs. These are the system calls that create 
new processes. They too work with PIDs, not names. However, there is a canonical pattern 
of file system access related to forks and execs. To execute a new program, the file 
containing the executable must be opened shortly after a new process has been forked. 
Proper analysis of the traces allows us to deduce the name of each new PID. We have 
recently added code to the system that allows our models to work with these names, rather 
than the previous PIDs. Since a given program is assigned an essentially random PID when 
it starts execution, this step was necessary to merge traces for multiple program runs, as well 
as to determine actual identities of processes. 

Our research for April will continue along these lines. We will refine and improve our 
models, possibly developing new ones. We will continue to collect traces on multiple 
machines. (For the moment, most of these traces are being archived for future use.) We will 
improve our tools. 
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March Accomplishments 

1. Improved two models for file system analysis. 

2. Improved the speed and efficiency of our central analysis tool. 

3. Started analysis using process name, rather than PID. 

April Planned Work 

1. Further improvement of existing models. 

2. Development of new models. 

Financial Data 

1. Funds expended through March: $20,200 

2. Percentage of total funds expended: 21.5% 

3. Number of months remaining on contract: 10 

4. Spending plan: On Track 
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File Profiling for Insider Threats 
Contract F33615-00-C-1746 

April 2001 
Contractor's Progress, Status and Management Report 

Line Item 0001, Data Item A003 
Reporting period: 1 April to 30 April 2001 

We continue to investigate models for detecting insider misbehavior by analyzing file traces. 
We have worked on several new models, and have tried checking some of our models on 
more than one user to determine if they are capturing per-user behavior or more generally 
characteristic behavior. 

We have developed one model that should allow us to detect some realistic attempts to obtain 
privileges that a user should not have. Often, on Unix-style systems, the first step for a 
misbehaving insider is to gain more file access privileges than he should legitimately have. 
This is typically done by attacking a program that has extra privileges. Such programs are 
intended to give unprivileged users stylized access to shared, protected resources. Common 
examples include print daemons and mail handling programs. Attackers frequently try to 
force such a program to malfunction in a way that leaves them with the general, unrestricted 
privileges of that program. 

A common example of this is causing a buffer overflow in such a program that results in the 
unprivileged user being given a command shell under the program's identity. The user then 
has the ability to do whatever the program's full privileges allow. Often, in Unix systems, 
this amounts to being able to do anything at all, since many such programs run under the 
superuser identity. Another common attack is to cause odd timing of program interactions to 
allow the user to obtain a command shell. 

One characteristic of both attacks is that they require the user to interact with the program in 
unusual ways. We have developed a model that captures the typical file access behavior of 
many programs, and our analysis shows that they frequently have highly stylized access 
behaviors. We believe that this model can detect many circumstances where misbehaving 
users attempt buffer overflows or timing attacks on programs. 

In the upcoming month, we will examine some real attacks of this kind and test them to see if 
our hypothesis is correct. We will also continue to develop other models. 

April Accomplishments 

1.   Developed model that has promise for detecting certain common types of attacks 
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2. Examined several models across different users 
3. Began investigating candidate attacks for testing models 

May Planned Work 

1. Test promising model against suitable attacks 
2. Continue developing new models 

Financial Data 

1. Funds expended through April: $24,410 

2. Percentage of total funds expended: 25.9% 

3. Number of months remaining on contract: 9 

4. Spending plan: On Track 
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File Profiling for Insider Threats 
Contract F33615-00-C-1746 

May 2001 
Contractor's Progress, Status and Management Report 

Line Item 0001, Data Item A003 
Reporting period: 1 May to 31 May 2001 

This project involves building models of user behavior to detect the difference between 
proper and improper insider behavior. These models are based on file system traces 
taken over the course of several months in our labs. 

As reported last month, we have found a model that has promise for detecting certain 
common kinds of attacks, such as many buffer overflows or timing attacks on temporary file 
creation In essence, this model encodes the typical file access behavior of a program. Our 
hypothesis is that buffer overflow attacks and timing attacks try to use programs in 
unusual ways that would not match the model of normal behavior. 

We spent this month refining the model and preparing a test to see if our hypothesis is 
correct  The preparations required obtaining a sample attack to test against the model. 
While sample attacks are readily available on the network, there are some practical 
issues that make it slightly difficult to find an appropriate one, such as finding 
one that runs on Linux and on an appropriate version of the Linux kernel. Our system 
relies on a kernel hook that we have only installed on a couple of versions of Linux, 
and going back in time to resurrect an old kernel and add the hook is time consuming. 

We hope to have a suitable sample attack installed on our system and tested in the near 

future. 

We may have a slowdown of progress over this summer, as our key student researcher will 
be out of the country for most of the summer. He will be taking a computer with him to 
work while away, but he will have limited connectivity. 

May Accomplishments 

1. Improved candidate model to start testing for detection of misbehavior 
2. Investigated several candidate attacks for testing. 

June Planned Work 

1. Choose one or more attacks for testing. 
2. Perform preliminary testing. 
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Financial Data 

1. Funds expended through May: $27.657 

2. Percentage of total funds expended: 29.4% 

3. Number of months remaining on contract: 8 

3.   Spending plan: On Track 
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File Profiling for Insider Threats 
Contract F33615-00-C-1746 

June 2001 
Contractor's Progress, Status and Management Report 

Line Item 0001, Data Item A003 
Reporting period: 1 June to 30 June 2001 

This project involves building models of user behavior to detect the difference between 
proper and improper insider behavior. These models are based on file system traces taken 
over the course of several months in our labs. 

Because of final exams and the key student leaving the country for the summer, progress 
during the last month was slight. We continue along the same lines as reported in the last 
month's report. We have a promising model using our basic methods that we believe can 
detect certain common classes of attacks by examining file system activity. 

We continue to look for a suitable test attack to check our hypothesis. The major difficulties 
are practical - finding an attack of the right type that runs on the software platform where our 
tracing facility runs. We hope that our student will continue to make progress during his trip 
home, but his Internet connectivity has been sporadic, as feared. 

June Accomplishments 

4. Investigated several candidate attacks for testing. 

July Planned Work 

1. Choose one or more attacks for testing. 
2. Perform preliminary testing. 

Financial Data 
1. Funds expended through June: $29,232 

2. Percentage of total funds expended: 31% 

3. Number of months remaining on contract: 7 

5. Spending plan: On Track 
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FILE PROFILING FOR INSIDER THREATS 
UCLA 

July 2001 
Contract F33615-00-C-1746 (LI 0001, Data Item A003) 

Technical Point of Contact: 
Peter Reiher 

reiher @ cs.ucla.edu 

2.    Introduction and Overview 

This project is investigating the possibility of detecting the misbehavior of authorized 
users by analyzing patterns of file system access. Our thesis is that normal, well-behaved 
access is characteristically different than the forms of access used by an insider trying to step 
beyond his legitimate role. To do this, we must trace large quantities of legitimate access, 
derive models of appropriate behavior from those traces, and compare these models to 
sample misbehaviors. 

The project is expected to 15 months, overall. We were fully funded at $94,154. 
Major team members are Dr. Peter Reiher, Dr. Geoff Kuenning, and graduate student Nam 
Nguyen. 

2. Project Research Objectives 

We must determine if normal access can be easily modeled across many users and 
across time. We must also determine if improper behavior actually does produce 
distinguishably different file system behavior. 

3. Expected Project Results 

If successful, our project will demonstrate that it is possible to detect important forms 
of insider misbehavior by intelligently observing file system behavior. 

4. Achievements and Issues 

Our lead graduate student, Nam Nguyen, is out of the country for the summer. His 
intent was to work remotely on the project, but circumstances have prevented that. Thus, our 
progress has not been along the same lines he had been examining. To avoid making no 
progress at all over the summer, we have been designing the architecture for the deployable 
system. 

Progress on statement of work milestones: 
1. Tracing program. We have gathered large quantities of file traces. 

Tracing continues on several machines in our office. 

43 



Completion of first tracing cvcle. Completed. Models are under 
development. Our graduate student's summer travel will slow 
progress on this item until his return in the autumn. 
Development of code to support data analysis. All code that we 
know is needed is completed. We expect periodically to find a 
need for more such code. 
Development of simple monitoring system. Progress was made 
this month on this milestone, though we are still slightly behind 
schedule. Our efforts for the remainder of the summer will be 
focused on this item, both because we want to return it to 
schedule and because we can do the work in the absence of our 
graduate student. In essence, we believe we can use an existing 
piece of code to build much of this system. The Seer file 
hoarding facility already records file accesses and performs 
operations on them in real time. The requirements for this insider 
threat detection problem would be somewhat different, but not 
sufficiently so to require an entirely different piece of code. 
Essentially, the Seer system would need to feed file trace 
information to multiple implementations of file access models, 
each of which would then test the access against its model to 
determine if a threat is occurring. We would need further code to 
handle monitoring and signaling, and we would need to determine 
if we should add a sophisticated piece of multiplexing code to the 
system to decide which models would receive which file access 
records. We also need to examine the current state of the Seer 
code, since it has been adapted to other purposes in the past year, 
being altered substantially in the process. We will report further 
on this issue next month. 
Tnitial results from running the, system live. This work will start 
in the autumn. We expect results 2 to 3 months before the end of 
the contract, roughly in November or early December. Given that 
the period of performance was expanded to 15 months, this work 
is on schedule. This item cannot be met until item 4 is completed, 
so we are focusing more effort on that item. 
Final report. This final report will be written when all other tasks 
have been completed. 

6.    Expenditures 

July expenditures Total: $8,131 
Salary + related benefits and OH: $8012 
Networking & supplies: $119 

Total expended to date: $37,367 (40% of funds) 

Remaining funds are adequate to complete all work by contract end (5 Feb 02) 
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6.        Program Status 
Contract completion date: 5 February 2002 
Percentage of contract period that has elapsed: 5.33% 
Total funds that have been expended: $37,367 
Percentage of contract funds that have been expended: 40% 
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FILE PROFILING FOR INSIDER THREATS 
UCLA 

August 2001 
BAA-00-06-SNK; FRT Research Topic 2 

Contract F33615-00-C-1746 (LI 0001, Data Item A003) 
1 August - 31 August 2001 

Technical Point of Contact: 
Peter Reiher 

reiher@cs.ucla.edu 

3. Introduction and Overview 

This project is investigating the possibility of detecting the misbehavior of authorized 
users by analyzing patterns of file system access. Our thesis is that normal, well-behaved 
access is characteristically different than the forms of access used by an insider trying to step 
beyond his legitimate role. To do this, we must trace large quantities of legitimate access, 
derive models of appropriate behavior from those traces, and compare these models to 
sample misbehaviors. 

The project is expected to 15 months, overall. We were fully funded at $94,154. 
Major team members are Dr. Peter Reiher, Dr. Geoff Kuenning, and graduate student Nam 
Nguyen. 

2. Project Research Objectives 

We must determine if normal access can be easily modeled across many users and 
across time. We must also determine if improper behavior actually does produce 
distinguishably different file system behavior. 

3. Expected Project Results 

If successful, our project will demonstrate that it is possible to detect important forms 
of insider misbehavior by intelligently observing file system behavior. 

4. Achievements and Issues 

Our lead graduate student, Nam Nguyen, is out of the country for the summer. His 
intent was to work remotely on the project, but circumstances have prevented that. Thus, our 
progress has not been along the same lines he had been examining. As discussed in last 
month's report, to avoid making no progress at all over the summer, we have been designing 
the architecture for the deployable system. Another key project member, Geoff Kuenning, 
spent much of the last month on vacation; this slowed our progress further since he is the 
author of the existing code we intend to adapt for the deployable system. However, we were 
able to make some progress in this area before he departed. 

Progress on statement of work milestones: 
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1.  Tracing program.   We have gathered large quantities of file traces. 
Tracing continues on several machines in our office. 

2.   Completion of first tracing cvcle.  Completed.  Models are under development. 
Our graduate student's summer travel will slow progress on this item until his 
return in the autumn. 

3   Development nf code to support data analysis. All code that we know is needed is 
completed. We expect periodically to find a need for more such code. 

4. Development of simple monitoring system. Some progress was made this month 
on this milestone. We have determined that the Seer system will indeed be 
suitable to adapt for this purpose. Our last report discussed briefly how Seer's file 
hoarding capability could be adapted to our purposes for this project. Both 
systems required real-time observation and analysis of a file access stream, 
though for different purposes. Seer is a somewhat old piece of code, but because 
portions of it have been used for a number of other purposes in our office, and 
because the original author is still a participant in this project, we have confidence 
that it will be workable. Relatively little effort will be required to make it work in 
our current operating system environment since it was originally designed for an 
earlier version of Linux. As much of Seer was kept out of the kernel as possible, 
making porting easier. Further, the major kernel hooks required by Seer are 
precisely those portions of the code that we have been using more or less 
continuously in our offices over the past three years, so they have already been 
ported to the version of Linux being used for this project. Porting the other 
portions of Seer will be relatively easy. Another major issue is that Seer only 
observed file opens and closes (and a few other operations, like changing the 
current working directory), not all reads and writes. Our tracing work has made it 
clear that we will need to look beyond opens and closes to detect misbehavior. 
While we already have altered the component of Seer that traps and records the 
other operations, we have not yet tried feeding these records into Seer's 
correlation facility. Some changes may be necessary there, and we will need to 
determine if Seer can keep up with the system with these extra records being fed 
in. A final, more fundamental difference is that we must entirely replace the code 
that Seer uses to analyze its data stream. Seer maintained huge tables of the order 
in which different files were accessed, but that is neither enough information nor 
the right information for detecting insider threats. All of this code will need to be 
changed. 

5 Tnitial results from running the system live. This work will start in the autumn. 
We expect results 2 to 3 months before the end of the contract, roughly in 
November or early December. Given that the period of performance was 
expanded to 15 months, this work is on schedule. This item cannot be met until 
item 4 is completed, so we are focusing more effort on that item. 
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Final report.   The final report will be written when all other tasks have been 
completed. 
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7.   Expenditures 
August expenditures Total: $7656 

Salary + related benefits and OH: $7384 
Networking & supplies: $272 

Total expended to date: $45,022 (52% of funds) 

Remaining funds are adequate to complete all work by contract end (5 Feb 02) 

6.        Program Status 
Contract completion date: 5 February 2002 
Percentage of contract period that has elapsed: 66.66% 
Total funds that have been expended: $45,022 
Percentage of contract funds that have been expended: 52% 
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FILE PROFILING FOR INSIDER THREATS 
UCLA 

September 2001 
BAA-00-06-SNK; FRT Research Topic 2 

Contract F33615-00-C-1746 ( LI 0001, Data Item A003) 
1 September - 30 September 2001 

Technical Point of Contact: 
Peter Reiher 

reiher @ cs. ucla. edu 

4. Introduction and Overview 

This project is investigating the possibility of detecting the misbehavior of authorized 
users by analyzing patterns of file system access. Our thesis is that normal, well-behaved 
access is characteristically different than the forms of access used by an insider trying to step 
beyond his legitimate role. To do this, we must trace large quantities of legitimate access, 
derive models of appropriate behavior from those traces, and compare these models to 
sample misbehaviors. 

The project is expected to 15 months, overall. We were fully funded at $94,154. 
Major team members are Dr. Peter Reiher, Dr. Geoff Kuenning, and graduate student Nam 
Nguyen. 

2. Project Research Objectives 

We must determine if normal access can be easily modeled across many users and 
across time. We must also determine if improper behavior actually does produce 
distinguishably different file system behavior. 

3. Expected Project Results 

If successful, our project will demonstrate that it is possible to detect important forms 
of insider misbehavior by intelligently observing file system behavior. 

4. Achievements and Issues 

Our lead student returned from summer vacation, so we have been able to make more 
substantial progress. We have identified three candidate attacks that we will use to test our 
hypothesis that we can detect insider threats by watching normal and attack file access traces. 
These attacks are buffer overflow attacks that are intended to grant a normal user extra 
privileges. They operate by forcing a program that has such privileges (but ordinarily uses 
them in a limited and benign manner) to give the user unlimited access to the privileges. In 
Unix terms, a setuid root program with limited access to critical files is subverted to give the 
user a general-purpose execution shell with complete root privileges. The three attacks are 
on the crond (a utility that allows users to schedule jobs to run at particular times), KDE mail 
(a program that handles e-mail), and mars_new (an emulator that provides a subset of the 
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functionality of Novell's file and print services for Linux). We have analyzed the normal 
behavior of these programs and the behaviors that are used to force the buffer overflows, and 
believe our system will detect the buffer overflow attacks. We will test that belief during the 
upcoming month. 

Progress on statement of work milestones: 

1. Tracing program. We have gathered large quantities of file traces. Tracing 
continues on several machines in our office. 

2. Completion of first tracing cvcle. Completed. Models are under development. 
Now that our graduate student has returned, progress on model development will 
speed up. 

3. Development of code to support data analysis. All code that we know is needed is 
completed. We expect periodically to find a need for more such code. 

4. Development of simple, monitoring system. In the upcoming month, we will 
analyze the results of running the three programs discussed above in normal use 
versus their behavior when under buffer overflow attack. This information will 
feed back into the design of the monitoring system. 

5. Tnitial results from running the system live. The results of our buffer overflow 
experiment will constitute one significant part of this deliverable. Work will 
continue on it during the autumn. 

6. Final report. This final report will be written when all other tasks have been 
completed. 

8. Expenditures 

September expenditures Total: $4660 
Salary + related benefits and OH: $4423 
Networking & supplies: $237 

Total expended to date: $49,682 

Remaining funds are adequate to complete all work by contract end (5 Feb 02) 

Program Status 

Contract completion date: 5 February 2002 
Percentage of contract period that has elapsed: 80% 
Total funds that have been expended: $49,682 
Percentage of contract funds that have been expended: 53% 
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FILE PROFILING FOR INSIDER THREATS 
UCLA 

October 2001 
BAA-00-06-SNK; FRT Research Topic 2 

Contract F33615-00-C-1746 (LI 0001, Data Item A003) 
1 October - 31 October 2001 

Technical Point of Contact: 
Peter Reiher 

reiher@cs.ucla.edu 

5. Introduction and Overview 

This project is investigating the possibility of detecting the misbehavior of authorized 
users by analyzing patterns of file system access. Our thesis is that normal, well-behaved 
access is characteristically different than the forms of access used by an insider trying to step 
beyond his legitimate role. To do this, we must trace large quantities of legitimate access, 
derive models of appropriate behavior from those traces, and compare these models to 
sample misbehaviors. 

The project is expected to 15 months, overall. We were fully funded at $94,154. 
Major team members are Dr. Peter Reiher, Dr. Geoff Kuenning, and graduate student Nam 
Nguyen. 

2. Project Research Objectives 

We must determine if normal access can be easily modeled across many users and 
across time. We must also determine if improper behavior actually does produce 
distinguishably different file system behavior. 

3. Expected Project Results 

If successful, our project will demonstrate that it is possible to detect important forms 
of insider misbehavior by intelligently observing file system behavior. 

4. Achievements and Issues 

As mentioned in last month's report, we are working with three specific attacks to test 
our thesis: an attack on crond, an attack on KDE mail, and an attack on mars_new. These 
three vulnerabilities all arise from buffer overflow attacks, perhaps the most common method 
for a normal user to obtain root privileges on a Unix/Linux system. 

Getting the vulnerabilities to work for testing purposes proved a bit more challenging 
than we expected. Typically, vulnerabilities depend on a particular version of the program in 
question, but also on a particular version of the operating system kernel (since often the 
program works differently, or not at all, on a different kernel version), and sometimes on 
versions of libraries or other system utilities. After some effort, we made all three 
vulnerabilities work on our test systems. 
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We then began to test methods of automatically detecting the attack. In addition to 
keeping file traces, we also keep information about which processes forked and executed 
other processes, so we are also using that data to detect these attacks. Based on the entire set 
of data available and our observation of how attack tools that attempt to use these 
vulnerabilities behave, we have observed at least four opportunities to automatically detect 
attempts to use the vulnerabilities under examination: 

1. Examining what other users are doing by attempting to access files belonging to other 
users in the /proc area. (This area contains files that represent running processes.) 

2. Attempting to access files for which the user does not have read, write, or execute 
permission. This behavior frequently indicates an attempt to find mistakes by the 
system administrator in setting these permissions. 

3. Frequently changing the working directory of a process. This behavior sometimes 
indicates an attempt to place files in directories that are owned by privileged users or 
have special treatment. For example, if the attacker wants to place a Trojan Horse 
program in a place where the root user is likely to encounter it, the attacker is likely to 
check many possible directories before finding a vulnerable one. 

4. Passing long arguments to programs, especially long arguments that contain machine 
instruction codes. This is characteristic of most buffer overflow attacks. 

We will further investigate these and other attack patterns in the upcoming month. 

Progress on statement of work milestones: 

1. Tracing program. We have gathered large quantities of file traces. Tracing continues 
on several machines in our office. 

2. Completion nf first tracing cvcle. Completed. Models have been developed. 

3. Development of code to support data analysis. All code that we know is needed is 
completed. We expect periodically to find a need for more such code. 

4. Development of simple monitoring system. We are using the information described 
above to design this system. 

5. Tnitial results from running the system live. The results above are part of this 
milestone. Work will continue on it during the autumn. 

6. Final report. This final report will be written when all other tasks have been 
completed. 
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9. Expenditures 

October expenditures Total: $9970 
Salary + related benefits and OH: $8808 
Networking & Supplies: $1162 

Total expended to date: $59,652 

Remaining funds are adequate to complete all work by contract end (5 Feb 02) 

Program Status 

Contract completion date: 5 February 2002 
Percentage of contract period that has elapsed: 80% 
Total funds that have been expended: $59,652 
Percentage of contract funds that have been expended: 63.35% 
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FILE PROFILING FOR INSIDER THREATS 
UCLA 

November 2001 
BAA-00-06-SNK; FRT Research Topic 2 

Contract F33615-00-C-1746 (LI 0001, Data Item A003) 
1 November - 30 November 2001 

Technical Point of Contact: 
Peter Reiher 

reiher @ cs. ucla. edu 

6. Introduction and Overview 

This project is investigating the possibility of detecting the misbehavior of authorized 
users by analyzing patterns of file system access. Our thesis is that normal, well-behaved 
access is characteristically different than the forms of access used by an insider trying to step 
beyond his legitimate role. To do this, we must trace large quantities of legitimate access, 
derive models of appropriate behavior from those traces, and compare these models to 
sample misbehaviors. 

The project is expected to 15 months, overall. We were fully funded at $94,154. 
Major team members are Dr. Peter Reiher, Dr. Geoff Kuenning, and graduate student Nam 
Nguyen. 

2. Project Research Objectives 

We must determine if normal access can be easily modeled across many users and 
across time. We must also determine if improper behavior actually does produce 
distinguishably different file system behavior. 

3. Expected Project Results 

If successful, our project will demonstrate that it is possible to detect important forms 
of insider misbehavior by intelligently observing file system behavior. 

4. Achievements and Issues 

As discussed in last month's report, we are working with three specific attacks to test 
our thesis. These are an attack on crond, an attack on KDE mail, and an attack on mars_new. 
These three vulnerabilities all arise from buffer overflow attacks, perhaps the most common 
method for a normal user to obtain root privileges on a Unix/Linux system. 

We have overcome the challenges mentioned in last month's report and were actually 
able to test these exploits. We ran them against our altered tracing kernel to determine their 
file access patterns, which should allow us to distinguish their file behavior from benign use 
of the same programs. Getting to this stage required some porting and some changes to our 
code.  For example, previously we had not traced root file accesses, since doing so could 
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sometimes cause a deadlock condition, and our earlier uses of the tracing code did not require 
root access. Having determined that we need root tracing for insider threat detection 
purposes, we changed the code to do such tracing and avoid the deadlock. 

Our original plan was to compare patterns of which files were opened in which order 
for normal use of a program to the same information for abnormal use. After examining 
traces of attack behavior, we found easier ways to use file trace information or slight 
additions to traced information to detect the attacks. For example, one can detect a probable 
buffer overflow attack by catching system calls and examining their arguments for unusually 
long arguments. Many buffer overflow attacks require that the program make a system call 
with the overflow information in order to clobber the stack, so this method catches the attack 
more easily than a general pattern match of file activity. 

Similarly, one of the attacks that involves linking to other users' files can be more 
easily detected by an attempt to create a symbolic link to a file owned by another user when 
the attacker does not have read/write/execute permissions for that file. Such links are legal to 
create, but are most typically used to fool a program into using a file it should not use. 
Again, a simple check for a behavior that, while legal, is never used by proper programs has 
proved easier than a generic pattern match. 

While these simple tests are effective against these attacks, they are ad hoc responses 
to particular attacks. We hope to develop enough experience with various attacks and 
detection methods to generalize these specific signatures into a model usable for many types 
of attacks. 

Progress on statement of work milestones: 

1. Tracing program. We have gathered large quantities of file traces. Tracing continues 
on several machines in our office. We updated the tracing code to also trace root activity. 

2. Completion of first tracing cycle. Completed. Models have been developed. 

3. Development of code to support data analysis   . All code that we know is needed is 
completed. We expect periodically to find a need for more such code. 

4. Development of simple monitoring system . We are using the information described 
above to design this system. 

5. Initial results from running the system live. The results above are part of this milestone. 
Work will continue on it during the winter. 

6. Final report. This final report will be written when all other tasks have been completed. 
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10. Expenditures 

November expenditures Total: $4887 
Salary + related benefits and OH: $4887 
Networking & supplies: $0 

Total expended to date: $64,539 (69% of funds) 

Remaining funds are adequate to complete all work by contract end (5 Feb 02) 

6.        Program Status 

Contract completion date: 5 February 2002 
Percentage of contract period that has elapsed: 86% 
Total funds that have been expended: $64,539 
Percentage of contract funds that have been expended: 69% 
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FILE PROFILING FOR INSIDER THREATS 
UCLA 

BAA-00-06-SNK; FRT Research Topic 2 
Contract F33615-00-C-1746 ( LI 0001, Data Item A003) 

1 January - 31 January 2002 

Technical Point of Contact: 
Peter Reiher 

reiher@cs.ucla.edu 

7. Introduction and Overview 

This project is investigating the possibility of detecting the misbehavior of authorized 
users by analyzing patterns of file system access. Our thesis is that normal, well-behaved 
access is characteristically different than the forms of access used by an insider trying to step 
beyond his legitimate role. To do this, we must trace large quantities of legitimate access, 
derive models of appropriate behavior from those traces, and compare these models to 
sample misbehaviors. 

The project is expected to 15 months, overall. We were fully funded at $94,154. 
Major team members are Dr. Peter Reiher, Dr. Geoff Kuenning, and graduate student Nam 
Nguyen. 

2. Project Research Objectives 

We must determine if normal access can be easily modeled across many users and 
across time. We must also determine if improper behavior actually does produce 
distinguishably different file system behavior. 

3. Expected Project Results 

If successful, our project will demonstrate that it is possible to detect important forms 
of insider misbehavior by intelligently observing file system behavior. 

4. Achievements and Issues 

This was the last full month of work on this project. We concentrated on wrapping 
up incomplete details and studying what we had learned from our efforts. The complete 
lessons will be described in our final report, but generally we learned that examination of file 
access traces can indeed often detect insider misbehavior. Our original thoughts on how to 
use this information did not always prove fruitful. However, we discovered several other 
methods of using the information, and also discovered that some other easily gathered 
information can make detection of misbehavior easier and more accurate. For example, pure 
use of file access information is not as powerful as also including information about process 
execution trees. 
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We did not complete two of our original milestones because we determined their 
purpose was better served by a different approach. We do not have a monitoring system that 
can be used in live operations, and, as a result, also do not have results of live performance of 
the system. The purpose of these milestones was to demonstrate that the system could detect 
actual attempts by insiders to misbehave. We determined that we could demonstrate this 
better by running actual attack tools and methods and demonstrating how they resulted in 
behavior well outside our models of normal behavior. Actually building the system to detect 
misbehavior in live operation would have required much engineering unrelated to the basic 
research goal of our project. We used the time instead to perform closer analysis of our trace 
data than originally planned and to develop a wider array of models. 

Progress on statement of work milestones: 

7. Tracing program. Completed. 

8. Completion of first tracing cycle. Completed. 

9. Development of code to support data analysis. Completed. 

10. Development of simple monitoring system.  Replaced by live testing of real attack 
tools and methods. 

11. Initial results from running the system live.    Replaced by live testing of real attack 
tools and methods. 

12. Final report. In progress. To be delivered in late February. 

11. Expenditures 

January expenditures Total: $17,429 
Salary + related benefits and OH: $17,057 
Networking & supplies: $372 

Total expended to date: $94,154 (100% of funds) 

Program Status 

Contract completion date: 5 February 2002 
Percentage of contract period that has elapsed: 100% 
Total funds that have been expended: $94,154 
Percentage of contract funds that have been expended: 100% 
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